

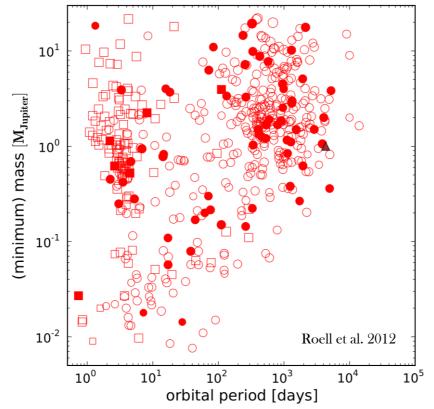
Constraining the frequency of sub-stellar companions on wide circumbinary orbits

Mariangela Bonavita^{1,2}

S. Desidera², C. Thalmann³, M. Janson⁴, A. Vigan⁵, G.Chauvin⁶ and J. Lannier⁶

¹Institute for Astronomy, The University of Edinburgh
²Osservatorio Astronomico di Padova, INAF, Italy
³Institute for Astronomy, ETH Zurich
⁴Department of Astronomy, Stockholm University
⁵Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille
⁶Institut de Planétologie et d'Astrophysique de Grenoble, UJF, CNRS

Unexplored planet population!

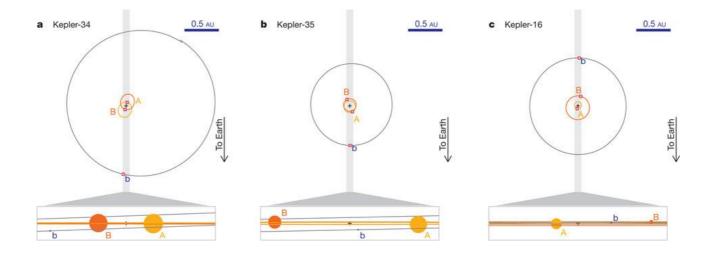

Unexplored planet population!

✓ > 50 % stars are in multiple star systems (Duquennoy & Mayor 1991)

Unexplored planet population!

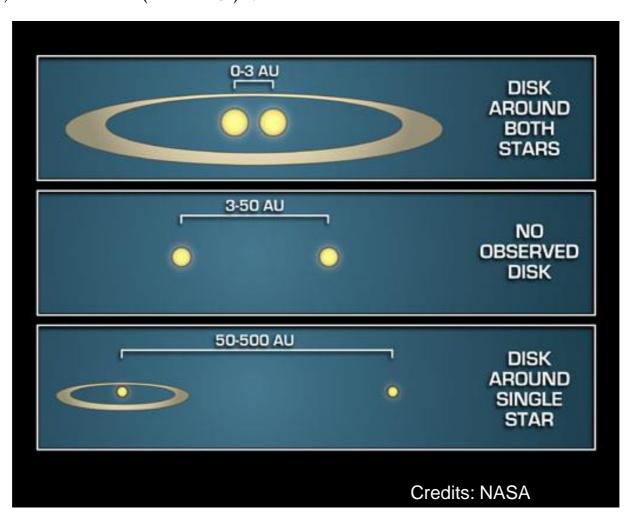
✓ > 50 % stars are in multiple star systems (Duquennoy & Mayor 1991)

✓ Several exoplanets hosts have been proved to be part of binary/multiple systems


Unexplored planet population!

✓ > 50 % stars are in multiple star systems (Duquennoy & Mayor 1991)

- ✓ Several exoplanets hosts have been proved to be part of binary/multiple systems
- ✓ Most RV and Transit surveys are biased against multiple stars


Probably abundant (?)

 \checkmark ~10 confirmed companions detected with Kepler up to now

Probably abundant (?)

✓ ~10 confirmed companions detected with Kepler up to now
✓ ~60% of close (<3 AU) binaries show IR excess rate

Probably abundant (?)

- \checkmark ~10 confirmed companions detected with Kepler up to now
- ✓ ~60% of close (<3 AU) binaries show IR excess rate
- ✓ Several claims of massive planetary companions to post-common envelope binaries detected via TTV

Probably abundant (?)

- \checkmark ~10 confirmed companions detected with Kepler up to now
- ✓ ~60% of close (<3 AU) binaries show IR excess rate
- ✓ Several claims of massive planetary companions to post-common envelope binaries detected via TTV

Well suited for detection with Direct Imaging

- ✓ Unlike RV and Transits, Direct Imaging is mostly sensitive to planets on wide orbits
- \checkmark Few planetary mass companions already imaged so far

First direct imaging survey <u>dedicated to circumbinary planets</u>

First direct imaging survey <u>dedicated to circumbinary planets</u>

UVLT/NaCo Pilot Survey

- ✓ 26 Targets
- ✓ 10 candidates
- \checkmark No confirmed co-moving companions

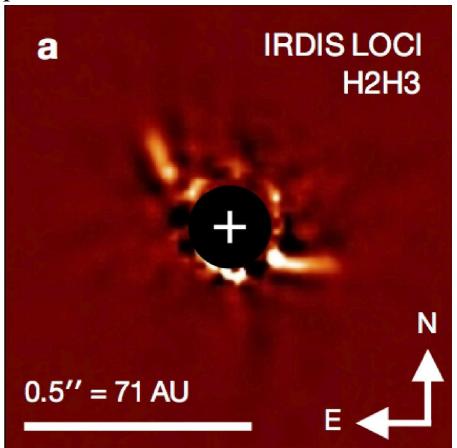
First direct imaging survey <u>dedicated to circumbinary planets</u>

UVLT/NaCo Pilot Survey

- ✓ 26 Targets
- ✓ 10 candidates
- \checkmark No confirmed co-moving companions

UVLT/SPHERE Full Survey

- ✓ 40 Targets
- \checkmark Several candidates


First direct imaging survey <u>dedicated to circumbinary planets</u>

UVLT/NaCo Pilot Survey

- ✓ 26 Targets
- ✓ 10 candidates
- \checkmark No confirmed co-moving companions

UVLT/SPHERE Full Survey

- ✓ 40 Targets
- ✓ Several candidates
- ✓ 1 resolved circumbinary disk (AK Sco)

Janson et al. 2016

- □ Circumbinary (CBIN) Sample
 - 24 Published Direct Imaging Surveys

Circumbinary (CBIN) Sample

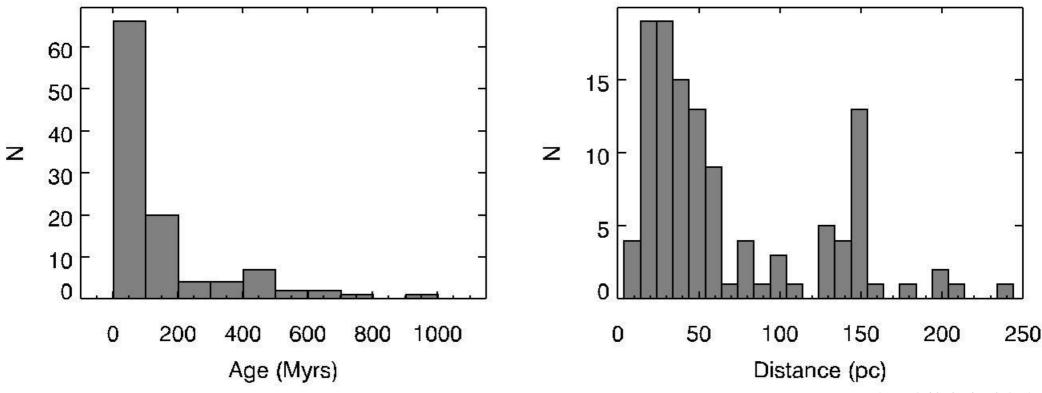
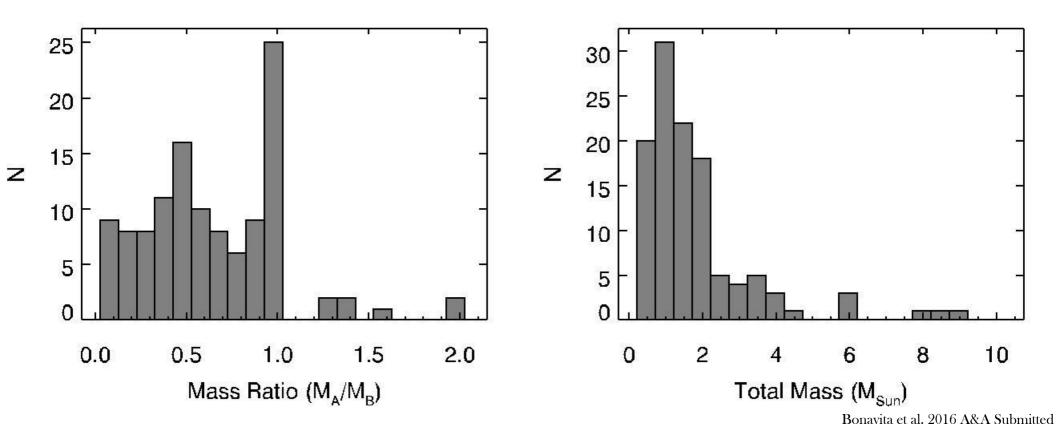
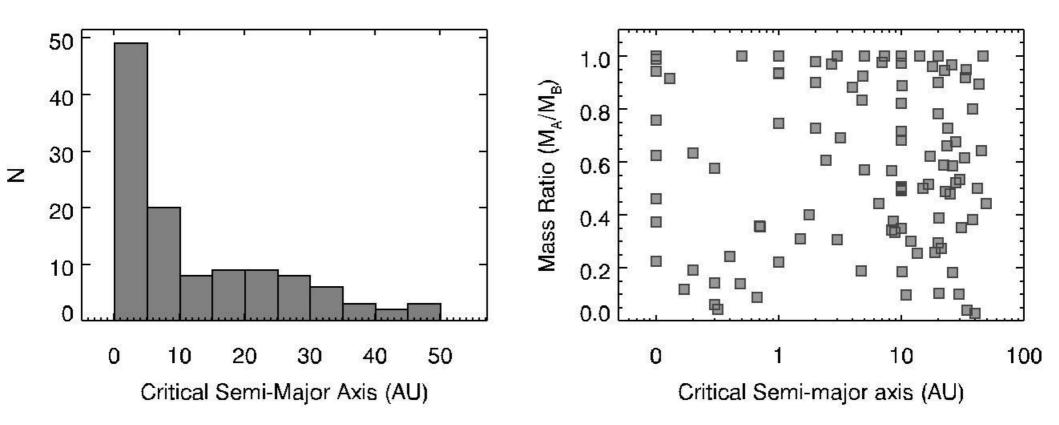

• 24 Published Direct Imaging Surveys

Table 1: Characteristics of the surveys considered to build the circumbinary (CBIN) sample. Both the total number of targets included in each survey (N_{Srv}) and the number of stars considered in our study (N_{CBIN}) are reported.

Source	Instrument	Technique	Filter	N_{Srv}	N_{CBIN}	Reference
L05	HST/NICMOS	COR	H(1.4-1.8)	45	6	Lowrance et al. (2005)
B06	VLT/NACO	COR	K_S/H	17	3	Brandeker et al. (2006)
B07	VLT-NACO/MMT	SDI	Н	45	7	Biller et al. (2007)
K07	VLT/NACO	DI	L	22	4	Kasper et al. (2007)
GDPS	GEMINI/NIRI	SDI	Н	85	8	Lafrenière et al. (2007)
CH10	VLT/NACO	COR	H/K_S	91	9	Chauvin et al. (2010)
H10	Clio/MMT	ADI	L'/M	54	3	Heinze et al. (2010)
JB11	GEMINI/NIRI	ADI	K/H	18	3	Janson et al. (2011)
JJ12	VLT/NACO	DI	K_S	1	1	Joergens et al. (2012)
V12	VLT/NACO, NIRI	ADI	Ks/H'/CH4	42	3 3	Vigan et al. (2012)
R13	VLT/NACO	ADI	Ľ	59	3	Rameau et al. (2013b)
B13	SUBARU/HiCiao	DI/ADI/PDI	н	63	6	Brandt et al. (2014a)
J13	SUBARU/HiCiao	ADI	Н	50	4	Janson et al. (2013a)
Y13	SUBARU/HiCiao	ADI	H/K_S	20	3	Yamamoto et al. (2013)
N13	GEMINI/NICI	ADI/ASDI	н	70	4	Nielsen et al. (2013)
BN13	GEMINI/NICI	ADI/ASDI	Н	80	4	Biller et al. (2013)
JL13	GEMINI/NICI	DI/ADI	K_S	138	5	Janson et al. (2013b)
L14	GEMINI/NIRI	DI/ADI	K_S	91	18	Lafrenière et al. (2014)
SONG	HST	ADI	Н	116	14	Song et al. priv. comm.
M14	VLT/NACO	ASDI	Н	16	1	Maire et al. (2014)
NLP	VLT/NACO	DI/ADI	Н	110	8	Chauvin et al. (2015)
D15	GEMINI/NIRI	DI	K_S	64	4	Daemgen et al. (2015)
B15	SUBARU/HiCiAO	DI/ADI	K_S	31	5	Bowler et al. (2015)
	KECK/NIRC2/N	DI/ADI	н	59	3	
L15	VLT/NACO	ADI	Ľ	58	10	Lannier et al. 2016 (submitted)


Techniques: COR = Coronagraphy; SDI = Spectral Differential Imaging; DI = Direct Imaging; ADI = Angular Differential Imaging; PDI = Polarized Differential Imaging; ASDI = Angular and Spectral Differential Imaging

- □ Circumbinary (CBIN) Sample
 - 24 Published Direct Imaging Surveys
 - 117 Systems
 - ✓86 binaries
 - ✓ 31 higher order multiples



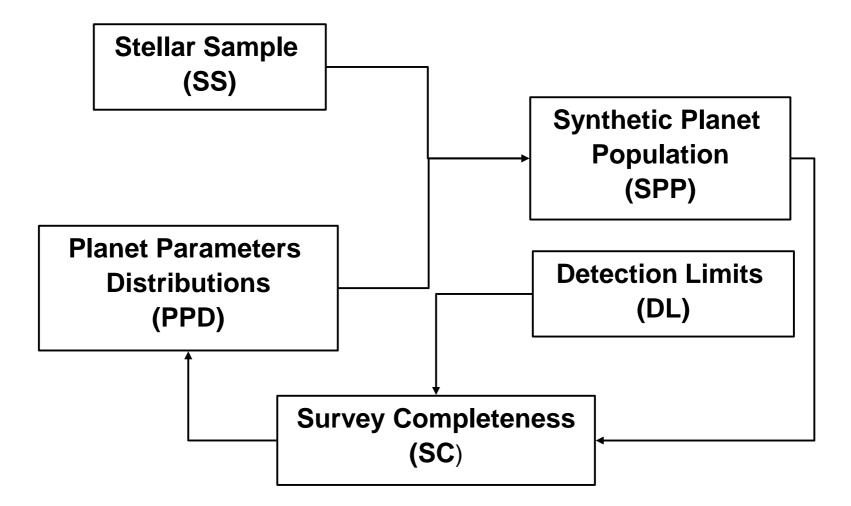
Bonavita et al. 2016 A&A Submitted

- □ Circumbinary (CBIN) Sample
 - 24 Published Direct Imaging Surveys
 - 117 Systems
 - ✓86 binaries
 - ✓ 31 higher order multiples

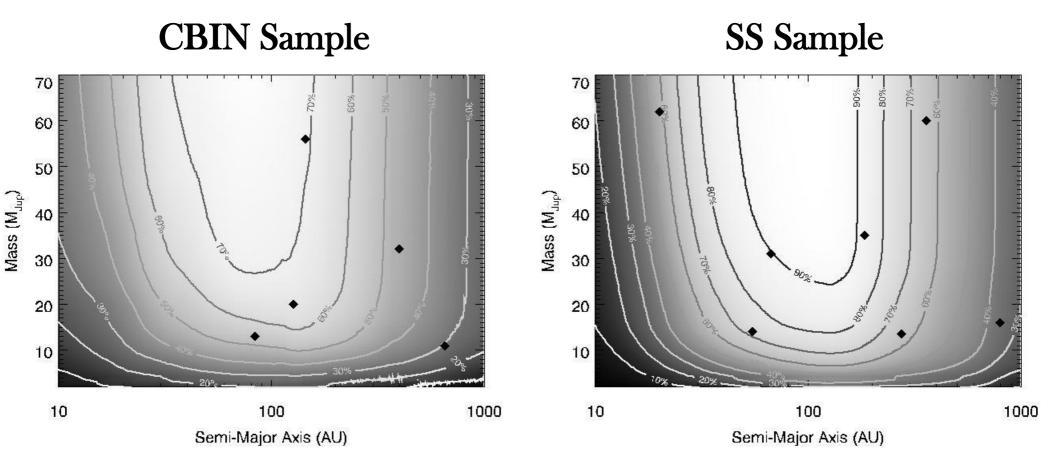
- □ Circumbinary (CBIN) Sample
 - 24 Published Direct Imaging Surveys
 - 117 Systems
 - ✓86 binaries
 - ✓ 31 higher order multiples

- □ Circumbinary (CBIN) Sample
 - 24 Published Direct Imaging Surveys
 - 117 Systems
 - ✓86 binaries
 - ✓ 31 higher order multiples
 - 5 Detections
 - $\checkmark 2$ planetary mass companions
 - ✓ 3 low-mass brown dwarfs

Name	Mass	Separation
HIP 59960 b	$11 \ \mathrm{M_{Jup}}$	$654 \mathrm{AU}$
2MASS J0103 AB b	$13 \ \mathbf{M}_{\mathbf{Jup}}$	84 AU
TWA 5 B	$20 \ \mathbf{M}_{\mathbf{Jup}}$	127 AU
HIP 19176 B	$32 \ \mathbf{M}_{\mathbf{Jup}}$	400 AU
H II 1348 B	$56 \ \mathbf{M}_{\mathrm{jup}}$	145 AU


□ Circumbinary (CBIN) Sample

- 24 Published Direct Imaging Surveys
- 117 Systems
 - ✓86 binaries
 - ✓ 31 higher order multiples
- 5 Detections
 - $\checkmark 2$ planetary mass companions
 - \checkmark 3 low-mass brown dwarfs

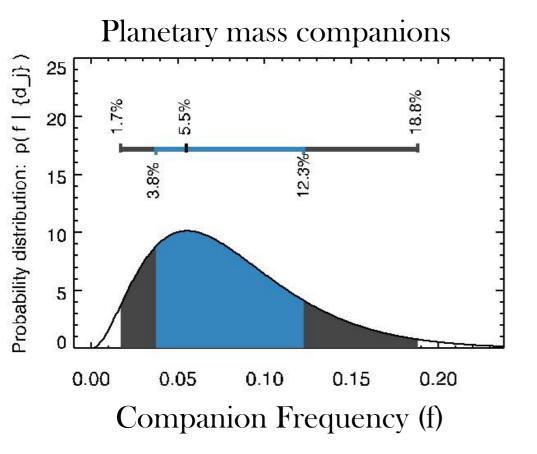

Single Stars (SS) Control Sample

- **205 Single stars and wide binaries** from the Brandt et al. 2014 paper
- 7 Detections
 - ✓ 2 planetary mass companions
 - ✓ 5 low-mass brown dwarfs

The Q-MESS Code (Bonavita et al. 2013) was used to estimate the survey detection probability fp_j

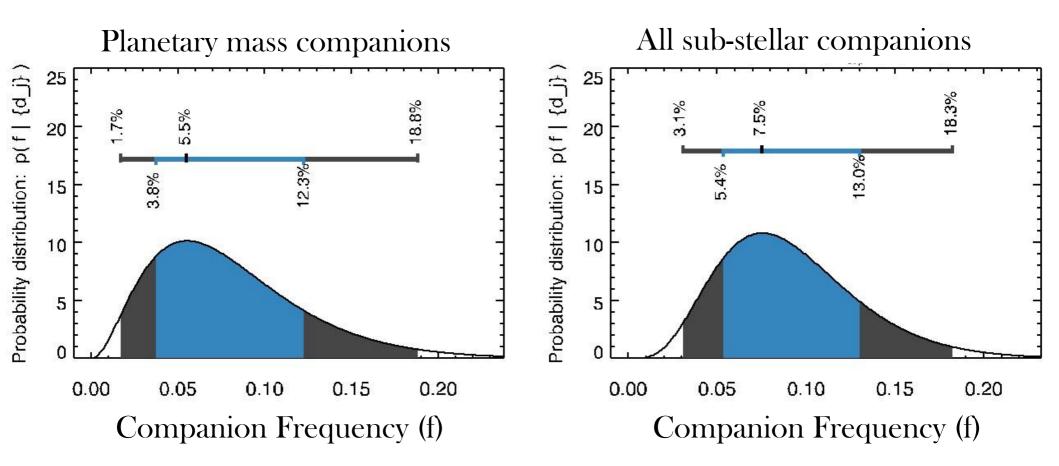
The Q-MESS Code (Bonavita et al. 2013) was used to estimate the survey detection probability fp_j

Bonavita et al. 2016 A&A Submitted

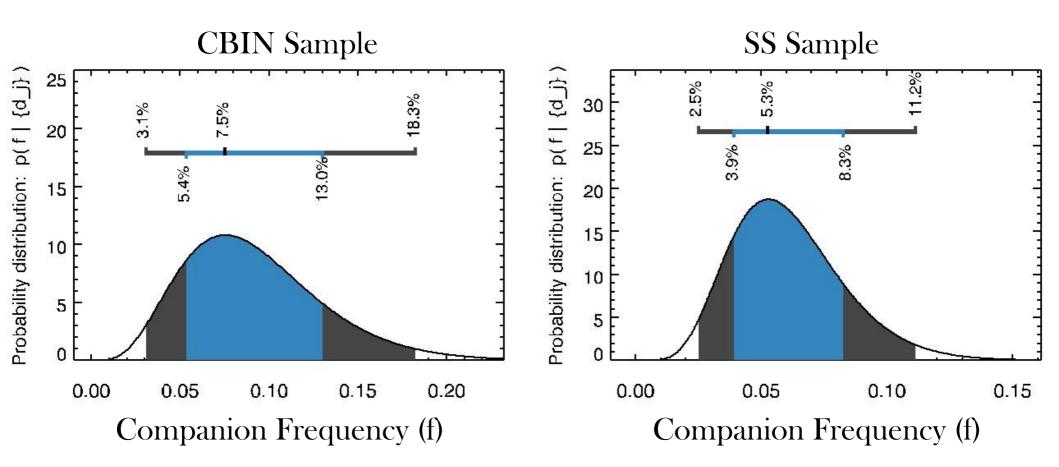

The Q-MESS Code (Bonavita et al. 2013) was used to estimate the survey detection probability fp_j

□ This was then used to constrain the probability distribution $p(f\{|d_j\})$ of the companion frequency *f*, given the detections *d_j*, for a given range of mass and semi-major axis, at a given confidence level α

- **The Q-MESS Code (Bonavita et al. 2013)** was used to estimate the survey detection probability fp_j
- □ This was then used to estimate the probability distribution $p\left(f\left\{ \left| d_{j}\right\}\right)\right)$ of the companion frequency f, given the detections d_{j} , for a given range of mass and semi-major axis, at a given confidence level α
- □ Finally we calculated the confidence interval $[f_{min}, f_{max}]$ so that: $\alpha = \int_{f_{min}}^{f_{max}} p\left(f\left\{\left|d_{j}\right\}\right) df$


 \Box Frequency of wide (< 1000 AU) circumbinary companions:

✓ Planets (2-14 M_{jup}) : $f \in [1.7, \% 18.8\%]$


Frequency of wide (< 1000 AU) circumbinary companions:

- Planets (2-14 M_{jup}) : $f \in [1.7\%, 18.8\%]$ Planets + Brown Dwarfs (2-70 M_{jup}) : $f \in [3.1\%, 18.3\%]$

□ Our observations are compatible with a frequency of wide (< 1000 AU) circumstellar companions up to 70 M_{Jup} between ~3% and ~18%

- □ Our observations are compatible with a frequency of wide (< 1000 AU) circumstellar companions up to 70 M_{Jup} between ~3% and ~18%
 - ✓ These values are in agreement with the frequency of companions around single stars

- □ Our observations are compatible with a frequency of wide (< 1000 AU) circumstellar companions up to 70 M_{Jup} between ~3% and ~18%
 - ✓ These values are in agreement with the frequency of companions around single stars
 - ✓ Such values also seem to point toward a second generation formation scenario for the planets around post-common envelope binaries

- □ Our observations are compatible with a frequency of wide (< 1000 AU) circumstellar companions up to 70 M_{Jup} between ~3% and ~18%
 - ✓ These values are in agreement with the frequency of companions around single stars
 - ✓ Such values also seem to point toward a second generation formation scenario for the planets around post-common envelope binaries

□ Our sample includes binaries similar to those targeted by Kepler but:

Most DI companions are very far from the stability limit

Name	Mass	Separation	Stability Limit
HIP 59960 b	$11 \ \mathrm{M_{Jup}}$	654 AU	~2 AU
2MASS J0103 AB b	$13 \ \mathrm{M_{Jup}}$	84 AU	~43 AU
TWA 5 B	$20~{\rm M}_{\rm Jup}$	127 AU	~ 12 AU
HIP 19176 B	$32 \ M_{Jup}$	400 AU	~ 40 AU
H II 1348 B	$56 \ \mathbf{M}_{\mathrm{jup}}$	$145 \mathrm{AU}$	~ 10 AU

- □ Our observations are compatible with a frequency of wide (< 1000 AU) circumstellar companions up to 70 M_{iup} between ~3% and ~18%
 - ✓ These values are in agreement with the frequency of companions around single stars
 - ✓ Such values also seem to point toward the second generation formation scenario for the planets around post-common envelope binaries

□ Our sample includes binaries similar to those targeted by Kepler but:

- \checkmark Most DI companions are very far from the stability limit
- Constraints on the binary orbits are not good enough

SPOTS II - Constraints from the literature: Conclusions

- There's no strong difference, in terms of the frequency of wide sub-stellar companions, between close binaries and single stars
- Such low companion frequency seems to favour the second generation scenario for planets around post-common envelope binaries
- Further information is needed to clarify whether the DI circumbinary planets and the Kepler ones belong to a different population

Probably abundant (?)

- \checkmark ~10 confirmed companions detected with Kepler up to now
- ✓ ~60% of close (<3 AU) binaries show IR excess rate
- ✓ Several claims of massive planetary companions to post-common envelope binaries detected viaTTV

Well suited for detection with Direct Imaging

- ✓ Unlike RV and Transits, Direct Imaging is mostly sensitive to planets on wide orbits
- \checkmark Few planetary mass companions detected so far

Could provide insights into planet formation

- Dependence of the planet mass/frequency on the disk mass (2 G-type = 1 A-type?)
- ✓ Dynamical effects shaping the planetary systems