

High Contrast Imaging with Spitzer

Constraining the Frequency of Giant Planets out to 1000 AU Separations

> Stephen Durkan (QUB)

Thanks to: Markus Janson (Stockholm University) & Joe Carson (College of Charleston)

High Contrast Imaging with Spitzer : Constraining the Frequency of Giant Planets out to 1000 AU separations.

Stephen Durkan¹, Markus Janson², Joseph C. Carson³

arXiv:1604.00859v1 [astro-ph.EP] 4 Apr 2016

ABSTRACT

We report results of a re-analysis of archival Spitzer IRAC direct imaging surveys encompassing a variety of nearby stars. Our sample is generated from the combined observations of 73 young stars (median age, distance, spectral type = 85 Myr, 23.3 pc, G5) and 48 known exoplanet host stars with unconstrained ages (median distance, spectral type = 22.6 pc, G5). While the small size of Spitzer provides a lower resolution than 8m-class AO-assisted ground based telescopes, which have been used for constraining the frequency of 0.5 - 13 M_J planets at separations of $10 - 10^2$ AU, its exquisite infrared sensitivity provides the ability to place unmatched constraints on the planetary populations at wider separations. Here we apply sophisticated high-contrast techniques to our sample in order to remove the stellar PSF and open up sensitivity to planetary mass companions down to 5" separations. This enables sensitivity to 0.5 - 13 M_J planets at physical separations on the order of $10^2 - 10^3$ AU, allowing us to probe a parameter space which has not previously been systematically explored to any similar degree of sensitivity. Based on a colour and proper motion analysis we do not record any planetary detections. Exploiting this enhanced survey sensitivity, employing Monte Carlo simulations with a Bayesian approach, and assuming a mass distribution of $dn/dm \propto m^{-1.31}$, we constrain (at 95% confidence) a population of 0.5 - 13 M_J planets at separations of 100 - 1000 AU with an upper frequency limit of 9%.

Outline

- Direct Imaging Introduction
- High Contrast Imaging with Spitzer
- Results of Spitzer Imaging Survey Re-analysis
- Wide Giant Planet Population Analysis

Imaging Technique

- Resolve planet from its parent star
- Provides a wealth of information
 - All orbital elements
 - Temperature
 - Radius
 - Mass
 - Atmospheric Constituents

NACO Image of the Brown Dwarf Object 2M1207 and GPCC

Imaging – an issue of size

 Under ideal conditions PSF FWHM scales linearly with diffraction limited resolution λ / D

Subaru D ~ 8m

Hubble D ~ 2m

Diffraction vs Seeing Limit

- Diffraction limited FWHM scales with λ / D
 - ~ 0.05 arcsec at NIR wavelengths
- Seeing limited FWHM dependent on site and atmospheric conditions
 - ~ range of 0.5 3 arcsec

Adaptive Optics Caveat

- Reference star is suitably close to the target star so both wavefronts travel through the same turbulent layers and statistically experience the same distortion
- Further off-axis the wavefront distortion become less and less correlated – anisoplanatism
- Complete decorrelation reached at isoplantic angle
 - Typical values 10" 20" in NIR

Typical imaging instruments are restricted to this FOV

Adaptive Optics Caveat

- Restricted FOV limits sensitivity to planetary mass companions at separation on the order of 10 – 100 AU
- Upper limit on planet frequency can be determined by subjecting imaging survey results to statistical analysis
- Constraining the giant planet population at 10 – 100 AU separations allows for stringent constraints to be placed on formation and evolutionary theories

Planet Frequency		
Separation Range (AU)	Fractional Upper Limit	\mathbf{Study}
50 - 250	0.093	(Lafrenière et al. 2007b)
25 - 100	0.110	(Lafrenière et al. 2007b)
10 - 150	0.060	(Biller et al. 2013)
40 - 150	0.100	(Chauvin et al. 2010)
	Separation Range (AU) 50 - 250 25 - 100 10 - 150 40 - 150	Planet Frequency Separation Range (AU) Fractional Upper Limit 50 - 250 0.093 25 - 100 0.110 10 - 150 0.060 40 - 150 0.100

Spitzer Space Telescope

- IRAC 5.2' x 5.2' FOV
- Operates 4 channels
 - 3.6, 4.5, 5.8, 8.0 micron
- Ideal for detection of wide giant planets
- However telescope diameter = 0.85 m
- At 4.5 micron FWHM = 1.72"

Survey Sample

- Combination of two archival Spitzer programs
- Program 34
 - Targeted 73 nearby, young targets
 - Median distance = 23.3 pc
 - Median age = 85 Myr
 - Median spectral type = G5
 - Median H band magnitude = 5.29
- Program 48
 - Targeted 48 nearby, relatively old, known exoplanet hosts
 - Median distance = 22.6 pc
 - Median age = 5.5 Gyr
 - Median spectral type = G5
 - Median H band magnitude = 4.96

PSF Subtraction

- Combined survey sample represents the library stack of available PSF's
- Conventional PSF construction is made from a mean / median of the image stack
- Optimal PSF construction can be made with sophisticated algorithms such as LOCI and PCA
- LOCI
 - Creates an optimal reference through the linear combination of library PSF's
- PCA
 - Creates an optimal reference through the linear combination of orthogonal basis sets
 - Orthogonal basis sets are the eigenvectors of the covariance matrix of the library stack
 - Principal components represent features that occur systematically throughout the data

PSF Subtraction

PSF Subtraction

Source Candidacy

Source Candidacy

Source Candidacy

Program 34 stars

Durkan et al. 2016, accepted

PCA Effectiveness

Population Constraints

- We exploit the null detection result and the magnitude detection limits to place constraints on the wide giant population through a Bayesian analysis
- Effectively the analysis determines the population of wide giants that is consistent with the derived planet detection probability and the null survey result.
- The planet frequency is given by the Bayesian approximation;

$$f_{max} \approx -\ln(1 \cdot \alpha)/N < P_j > 0$$

• We choose α to be 95%

Simulated Planetary Properties

- Simulate 10,000 planets
- Sample mass between 0.5 13 MJ assuming a distribution of dn/dm α m^{-1.31}
- Sample separation between 100 1000 AU assuming a linear distribution
- Age sampled between limits of reliable literature estimates for P34 targets, 1 – 10 Gyr for P48 targets
- Mass translated into magnitude using COND-based evolutionary models
 - Detection probability given by number of detected planets / 10,000

Result

Mass Range (M_J)	Separation Range (AU)	Planet Frequency Fractional Upper Limit	Study
0.5 - 13.0	50 - 250	0.093	(Lafrenière et al. 2007b)
0.5 - 13.0	25 - 100	0.110	(Lafrenière et al. $2007b$)
1.0 - 20.0	10 - 150	0.060	(Biller et al. 2013)
1.0 - 13.0	40 - 150	0.100	(Chauvin et al. 2010)
0.5 - 13.0	100 - 1000	0.090	(Durkan et al. 2016)

Conclusion

- Previously the large PSF associated with Spitzer has severely limited its capability for directly imaging exoplanets
- With the application of PCA we have removed the stellar PSF and opened up sensitivity to planetary mass companions over 100 – 1000 AU separations
- PCA has provided up to a magnitude sensitivity improvement with respect to conventional PSF subtraction methods
- Through the coupling of Monte Carlo simulations and a Bayesian analysis for the first time we have constrained the population of $0.5 13 M_J$, 100 1000 AU planets, deriving an upper frequency limit of 9%

Supplementary Information

Derived Constraints

Constant mass range 0.5 – 13 M_J

Constant separation range 100 – 1000 AU

Program 48 stars

Potential Bias

- Presence of a detected short period planet for 48 stars in the sample
- Presence of 43 binary stars in the sample
 - We record a null planet detection in these systems
 - Binary companion introduces a parameter space of instability in which we would not expect a planet to orbit
 - Use stability criteria of Holman & Wiegert (1999) to determine these instability regions and ensure they are counted as non-detectable ranges when deriving probabilities
 - However an element of bias remains as true frequency of wide giants around binary stars may be different to that around single stars

Simulated Planetary Properties

- Simulate 10,000 planets
- Sample mass between 0.5 13 MJ assuming a distribution of dn/dm α m^{-1.31}
- Sample separation between 100 1000 AU assuming a linear distribution
- Sample orbital projection factor using method of Brandeker et al. 2006
- Physical separation is translated to angular separation using known stellar distance
- Age sampled between limits of reliable literature estimates for P34 targets, 1 – 10 Gyr for P48 targets
- Mass translated into magnitude using COND-based evolutionary models
- Each simulated planet is then mapped onto the sensitivity curve and detection / non-detection is recorded
- Detection probability given by number of detected planets / 10,000

Simulated Planetary Properties

 $S = 2\pi^{-1} \arccos(1 - 2X)$

Brandeker et al. 2006