Dynamic Mineral Clouds on HD 189733b

Graham Lee

PhD student University of St Andrews Exeter - 31st March 2016

Lee et al. (A&A submitted) arXiv:1603.09098 I. Dobbs-Dixon², Ch. Helling¹, K. Bognar³ & P. Woitke¹

- 1. St Andrews
- NYU Abu Dhabi
 Toronto

Why does it never rain on the Moscow parade?

Silver Iodide

DooFi - "Cloud Seeding"

See also: C.W. McCall - "Silver Iodide Blues" Seed particles on hot Jupiters?

Depends on -

Local gas temperature

Molecular abundance

Material properties

Woitke & Helling (2003)

Cloud Particle Growth

Growth velocity

$$\sum_{s} \chi_s = \chi^{\rm net} \; [\rm cm \; s^{-1}]$$

Woitke & Helling (2003)

Dust Moment Definition

$$\rho_{\text{gas}} L_j(\vec{r}, t) = \int_{V_l}^{\infty} f(V, \vec{r}, t) V^{j/3} \mathrm{d}V$$

jth Volume

integrated moment

Grain volume jth Weighting distribution in volume

Moment Conservation Equations

$$\frac{\partial \left(\rho_{\text{gas}} L_{j}\right)}{\partial t} + \nabla \cdot \left(\rho_{\text{gas}} L_{j} \mathbf{u}_{d}\right) = V_{l}^{j/3} J_{*} + \frac{j}{3} \chi^{\text{net}} \rho_{\text{gas}} L_{j-1}$$

Dust moment time dependence

j = 0, 1, 2, 3

Advective flux Dust hydrodynamic velocity: **U**d Nucleation

Surface growth/evaporation

Woitke & Helling (2003), Helling, Woitke & Thi (2008)

Element Conservation Equations

Local element

Advection of abundance un-condensed elements

Depletion from nucleation

 $S_r > 1$ Growth of material = element depletion

 $S_r < 1$ Evaporation of material = element replenishment

Woitke & Helling (2003)

RHD + clouds test case: HD 189733b

Hot Jupiter -Mass: 1.138 MJ Radius: 1.138 RJ Semi-major axis: 0.03142 AU Most observed exoplanet to date from radio to X-ray

Use **Dobbs-Dixon & Agol (2013)** RHD model framework

Nasa/ESA - "HD 189733b deep blue dot" Add 3D cloud formation modules

Evolve conservation equations in time

Hydrodynamics

(See talks by G. Vallis and N. Mayne)

Particle transport Element transport

Gas phase chemistry

Element depletion

Settling

Cloud

Formation

Nucleation

Cloud opacity Mie theory

Radiative Transfer

Effective medium theory

Growth/Evaporation

Seed particles

TiO₂

Cloud formation species

TiO₂[s], SiO[s], SiO₂[s], MgSiO₃[s], Mg₂SiO₄[s]

Element depletion

Ti, O, Si, Mg

Conservation equations

4 moments, 5 volume fractions, 4 element

Dynamic transport of cloud

Global distribution of cloud particles

Latitude and depth Equator more dense differences

Diversity of cloud particle sizes

Meridional Polar Slice

Fig: Charles Staats

Slice RHD spherical grid at a latitude View results from a polar perspective

MgSiO₃[s] Volume Fractions

Equator

Mid-Latitude

Dominant at mid-high latitudes

$MgSiO_3[s] + Mg_2SiO_4[s] = 90+\%$

Equatorial Cloud Composition

Equator, $\theta = 0^{\circ}$

Dayside **TiO₂[s]** seed particles

Equator dominated by SiO₂[s]

Formation of SiO₂[s] equatorial belt

Element Depletion

ώ

 270°

Cloud Formation Cycle

Hot gas transported to nightside Smaller particles at dayside and terminator

Cloud Formation Cycle

Evaporation of material $\Phi \sim 270^{\circ}-315^{\circ}$

Growth of material $\Phi \sim 90^{\circ}-180^{\circ}$

Nightside replenished by winds Severe depletion nightside & Φ ~ 270° terminator "Reduce (gaseous elements) - Reuse (seed particles) - Recycle (regrow grains)"

More results:

Velocity structure

Temperature bumps - cloud backwarming

Gas vs Cloud opacity - radiative effects

Near future results:

Transit spectra, phase curves, dayside luminosities

(Preliminary results look promising)

Optical scattering of cloud particles: Kepler-7b?

Summary & Conclusions

Interplay between hydrodynamics and cloud formation leads to a complicated inhomogeneous cloud structure

A cycle of element depletion and replenishment from particle growth and evaporation is present, driven by the equatorial jet

Clear differences between night and day cloud properties

@GrahamLee239 gl239@st-andrews.ac.uk

