

erc



Opacities for modelling atmospheres of exoplanets

S. N. Yurchenko J. Tennyson and ExoMol team Physics and Astronomy

#### ScH AIOHNO3 CH4 NH3 HCN **C2** SiH NiHCH3Cl CaO PO NŠ LiH Cź SH CH HC 03 **P0 SO** CH **C**2 PΗ **SO3** 6 a **Y**0 MgH Si0 BaO H2 SiH S02 S02

Dan Underwood Renia Diamantopoulou Andrey Yachmenev SergeyYurchenko Phillip cores Alec Owens Male G Sarah Rugheimer Jonathan Tennyson Christian Hill Katy Chubb Oleg Polyansky Andrei Patrascu Emil Zak Laura McKemmish erc Lorenzo LodiClara Sousa Silva

ExoMol produces opacities for *all* molecules likely to be important for exoplanetary atmospheres

# Opacities

## Intensities

## Spectrum

#### Methane high resolution spectrum



Transmitance

### Flux



For exoplanetary transit: Opacity = R(planet)/R(star)



NASA's Hubble

Howe and Burrows, 2012 ApJ **756** 176

#### **Our** Opacity = cross-sections







# **Optical depth** $\tau_{\lambda}^{n}(z) = \int_{0}^{l(z)} \sigma_{n}(\lambda) \chi_{n}(z') \rho_{N}(z') dl$ density Crosssections

#### Here is Methane absorption using different profiles



## Our Opacity = line list

This is our 2016-line list for water compared to experiment, each line represented by a stick



## ExoMol = line lists

## Astrophysics with ExoMol

#### ScH AIOHNO3 CH4 NH3 HCN **C2** SiH NiHCH3Cl CaO PO NŠ LiH Cź SH CH HC 03 **P0 SO** CH **C**2 PΗ **SO3** 6 a **Y**0 MgH Si0 BaO H2 SiH S02 S02

I will show examples of ExoMol line land of their (possible or actual) applications I will go through molecules not necessarily in any special order

I will start from C<sub>2</sub>

# $C_2$

# is seen in many places for example Carbon stars (obviously)



#### Here is an example of High-Res Spectra of Carbon stars



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 185:289–432, 2009 December © 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0067-0049/185/2/289

#### THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS

JOHN T. RAYNER<sup>1</sup>, MICHAEL C. CUSHING<sup>1,3</sup>, AND WILLIAM D. VACCA<sup>2</sup>

<sup>1</sup> Institute for Astronomy, University of Hawaií, 2680 Woodlawn Drive, Honolulu, HI 96822, USA; rayner@ifa.hawaii.edu, michael.cushing@gmail.com <sup>2</sup> SOFIA-USRA, NASA Ames Research Center MS N211-3, Moffett Field, CA 94035, USA; wvacca@sofia.usra.edu Received 2009 March 5; accepted 2009 September 3; published 2009 November 17

#### ABSTRACT

We present a 0.8–5  $\mu$ m spectral library of 210 cool stars observed at a resolving power of  $R \equiv \lambda/\Delta\lambda \sim 2000$  with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are





Here is a particular example of HD 76221 with nice C<sub>2</sub> band-heads







wavelength, µm

ExoMol's C<sub>2</sub> is shown on the lower display and compares very well

C<sub>2</sub> can be also cold In comets


#### Here is the spectrum of Coma of Comet Tuttle



*(Ignore the CN for now, which is also available at ExoMol)* 



### Hydrogen cyanide



# HCN has been seen in our Solar system



#### HCN on Titan



ExoMol's has produced HCN (by Emma Barton)

#### Here is our HCN compared to Voyager 1's spectrum



Which contains half a billion lines and represents it rather well

## HCN has been seen on stars

for example T Tauri



#### Organic molecules: Inner Disks of T Tauri Stars



Carr & Najita, ApJ, 733, 102 (2011)

### ExoMol's HCN

#### Here is a zoom-in with ExoMol's HCN



HCN: Inner Disks of T Tauri Stars Carr & Najita, ApJ, 733, 102 (2011)

#### HCN on Exoplanets?

Maybe

## on Super-Earth 55 Cancri e

Lets look at the transit of the Super-Earth 55 Cancri e with Hubble's WFC3

#### Look at these two "features"



#### This is what we think (modelling with tau-Rex)



#### 55 Cancri e

WFC3 HST

#### HCN: Why not? (modelling with tau-Rex)



55 Cancri e

WFC3 HST

#### Super-Earth 55 Cancri e

Just look at this world: don't you agree it is unpleasant enough for prussic acid?

#### Also support by chemical model by O. Venot

#### The model included not only HCN: also H<sub>2</sub>O, CO, NO, H<sub>2</sub>S, CO<sub>2</sub>, CH<sub>4</sub>, NH<sub>3</sub>



#### However ts is only indication of HCN









Hydrogen peroxide  $H_2O_2$ 



# Hydrogen peroxide $H_2O_2$

has been seen in Solar system as well





# Hydrogen peroxide $H_2O_2$

On Mars, where it is used to monitor the seasonal changes of the atmosphere

#### H<sub>2</sub>O<sub>2</sub>: Martial seasonal changes



# Well, just a few lines of $H_2O_2$ at least

Encrenaz Planetary and Space Science 68 (2012) 3–17

#### ExoMol's H<sub>2</sub>O<sub>2</sub> by Ahmed Al-Refeie is hot!

It is new and designed to model hot (800 K) environments

#### ExoMol: hot $H_2O_2$ , containing these monitoring features at 8 $\mu$ m



It contains 20 billion lines

#### Going hotter

### Vanadium oxide (VO)



VO/TiO are found a lot in M-type stars spectra


### Here is an example of M dwarfs high resolution spectra



HD199799, M1 HD163990, M6Svar HD207076, M7 III HD126327, M7.5 I HD113285, M8 III

#### Falcón-Barroso et al. (2011)

# Here it is overlaid with synthetic TiO spectrum



HD199799, M1 HD163990, M6Svar HD207076, M7 III HD126327, M7.5 I HD113285, M8 III



# VO/TiO Can be detected on Exoplanets?

Apparently yes, learning from this conference

WASP-121b?

Aluminum Oxide

Not very often featured by the exoplanetary models Is it because of T? Aluminum Oxide

in red supergiant

#### VY Canis Majoris



## Here is an example of AIO in red supergiant VY Canis Majoris



Kaminski, Schmidt & Menten (2013)

## AIO

# ExoMol's line list (Andrei Patrascu) is pretty good even for high Temperatures

## AIO was seen in red supergiant VY Canis Majoris



Kaminski, Schmidt & Menten (2013)

# AlO

It has very nice bandheads, easy to detect at around 0.5  $\mu$ m sensitive to isotopic variation

#### Isotope substitution: 27 to 28



ExoMol: Patrascu et al MNRAS 449, 3613 (2015)

## CrH and FeH

CrH and FeH seen on L-type dwarfs a lot



CrH and FeH used to classify the L-type dwarfs by Kirkpatrick et al. (1999)

### Here is an example of L-type dwarfs spectra with CrH and FeH



Maire Gorman (ExoMol PhD) has produced a new CrH line list

The line list is to replace Burrow's line list



#### Here is example of L-dwarf spectra with



Rayner et al ApJ SS, 185, 289 (2009)

## Here is example of L-dwarf spectra with CrH from ExoMol



## CrH is transition metal and very difficult to get right



Going hotter:

SiO

It has been spotted in Sun spots spectra







## and red Giants



#### Here are SiO bands in oxygen-rich giants and supergiants



#### Wallace & Hinkle (2002)

## Another example of SiO in K-type supergiant HD 225212



Lebzelter A&A 539, A109 (2012) A library of high resolution spectra in the near-infrared

#### CaO – new line list

It is a possible constituent of rocky type exoplanets, CaO has not been detected astrophysically.

#### CaO – new line list

#### Here different bands are shown with the strongest at 1 $\mu$ m



## CaO has a huge dipole and a nice feature at 1 $\mu m$



Can these oxides be important for absorption/radiative cooling of *Lava planets?* 



New line list for NaH

which is also to be detected, but expected for M-type objects

#### NaH

#### For example it was suggested for GJ 551
# Here is the observed data of GJ 551 (Mike Bessell)



Courtesy Mike Bessell



And Exomol spectrum of NaH is very flat is broad

# Here is the observed data of GJ 551 (Mike Bessell)



Courtesy Mike Bessell

#### Some polyatomics

PH<sub>3</sub> (Phosphine) ExoMol line list was computed by Clara Souosa Silva containing more than 10 billion lines



Phosphine was found spectroscopically in the Solar system





# Here is the Cassini spectrum of Saturn and Titan, where many molecules have been detected incl PH<sub>3</sub>



Baines et al, Earth, Moon, and Planets 96, 119 (2005)

More excitingly: Clara figured out that due to spontaneously flammable and extremely toxic PH<sub>3</sub>

> .... and since it can be produced by organic sources, it be suggested as a chemically sound biosignature for fire breathing *dragons*

C. Sousa-Silva et al (ExoMol) MNRAS 446, 2337 (2015)



#### It also has a nice strong feature at 4.5 $\mu m$



# Another exciting Clara's idea is inversion splitting of PH<sub>3</sub>

Just like Ammonia it has a pyramid structure



The splitting at the bottom of about 1 Hz

We just need to convince experimental people to do the observations

#### ... but with large barrier to the planarity. Here is the double-well potential



#### So far - no one is interested in Phosphine gas



# Methane (CH<sub>4</sub>) ExoMol line list: 10 billion lines 10to10

CH<sub>4</sub> is the most important molecule for the project



# Methane ExoMol line list <del>10 billion</del> 35 billion lines

which took 4.5 million CPUh DiRAC HPC (COSMOS and Darwin) and about 6 months of the human time

# CH<sub>4</sub> has been detected in many objects.













# CH<sub>4</sub> is detectable even at low resolution

# Here is the Brown dwarf spectrum at R=120



In fact the feature at 1.61  $\mu$ m is very important and it was difficult to model before ExoMol

# Here is the T 4.5 dwarf spectrum and our solution to that





Anyways, it has been now used by many groups

#### Tau-Rex

#### NEMESIS

#### Met Office
#### NASA Ames

However it is not perfect and we are now working on Methane 2.0 The main problem is that it is incomplete and inaccurate at  $$<0.9\ \mu m$$ 

#### It may appear weak on this graph but it is known to be important



The methane line list is also too big (35 billion lines) for line-by-line modeling



We are working on it with help by David Amundsen and Isabelle Baraffe

## Ammonia (NH<sub>3</sub>)



Ammonia (NH<sub>3</sub>) Known to be on Jupiter





Ammonia

Exiting detections on (cold) Brown dwarfs



Here is an example of Dwarf GI 570D by Adam Burgasser et al. (2003)



Together with model from the paper by Saumon ApJ (2006)

and ExoMol model on top, which agrees well for this region

Ammonia ExoMol line list called BYTe (1 billion transitions) Ammonia on exoplanets?

## Why not? 11 $\mu$ m feature is the most prominent



#### Other molecules



#### Molecular line lists for exoplanet & other atmospheres

ExoMol0: Tennyson and Yurchenko MNRAS (2012)

| H <sub>2</sub>   | PH <sub>3</sub>                                        | AlO               | AIH                | C <sub>3</sub>           | HNO <sub>3</sub> | PN                             | H <sub>2</sub> S | CrH                                        | ScH                        |       |
|------------------|--------------------------------------------------------|-------------------|--------------------|--------------------------|------------------|--------------------------------|------------------|--------------------------------------------|----------------------------|-------|
| LiH              | ОН                                                     | SO <sub>2</sub>   | CH <sub>3</sub> Cl | C <sub>2</sub>           | BeH              | H <sub>2</sub> S               | KCI              | HCN                                        | HNC                        | Done  |
| $HeH^+$          | NO                                                     | SH                | HCI                | CH <sub>4</sub>          | NaCl             | SiO                            | MgH              | СН                                         | CN                         |       |
| $H_3^+$          | <b>O</b> <sub>3</sub>                                  | H <sub>2</sub> CO | HDO                | H <sub>2</sub> O         | NH <sub>3</sub>  | CaH                            | SO <sub>3</sub>  | СО                                         | CO <sub>2</sub>            |       |
|                  |                                                        |                   |                    |                          |                  |                                |                  |                                            |                            |       |
| $H_2D^+$         | O <sub>2</sub>                                         | ноон              |                    | TiO                      | VO               | FeH                            | CaO              | <b>C</b> <sub>3</sub>                      | $C_2H_2$                   |       |
| H₂D <sup>+</sup> | O <sub>2</sub><br>NaH                                  | HOOH<br>BaO       | VN                 | TiO<br>CH <sub>3</sub> D | VO<br>YO         | FeH<br>SiH <sub>4</sub>        | CaO<br>PH        | C₃<br>SH                                   | $C_2H_2$<br>$C_2H_4$       |       |
| H₂D <sup>+</sup> | O <sub>2</sub><br>NaH<br>P <sub>2</sub> H <sub>2</sub> | HOOH<br>BaO<br>SO | VN<br>HF           | TiO<br>CH <sub>3</sub> D | VO<br>YO<br>NiH  | FeH<br>SiH <sub>4</sub><br>TiH | CaO<br>PH<br>SiH | C <sub>3</sub><br>SH<br>CH <sub>3</sub> Cl | $C_2H_2$ $C_2H_4$ $C_2H_6$ | To-Do |

## ExoMol website will have a new look soon ...

| ExoMol High tempera         | Go                         |                     |                  |                |  |  |  |
|-----------------------------|----------------------------|---------------------|------------------|----------------|--|--|--|
| Data - About - Act          | tivities - Outreach Contae |                     | <b>◆〕</b> Log in | 🖸 Sign up      |  |  |  |
| By Molecule<br>By Data Type | Molecules                  | olecules            |                  |                |  |  |  |
|                             | other hydrides             | metal oxides        | metal hydrides   | other          |  |  |  |
|                             | NH                         | Alo                 | MgH              | diatomics      |  |  |  |
|                             | СН                         | TiO                 | NaH              | PN             |  |  |  |
|                             |                            | SiO                 | NiH              | ксі            |  |  |  |
|                             |                            | CaO                 | SiH              | NaCl           |  |  |  |
|                             | other ovides               |                     | CrH              | LiCl           |  |  |  |
|                             | other oxides               |                     |                  | CN             |  |  |  |
|                             | CO                         |                     | Can              | C <sub>2</sub> |  |  |  |
|                             | NO                         | larger<br>molecules | Тін              | H <sub>2</sub> |  |  |  |

#### ExoMol database with new features

Line lists
Cross-sections
Partition functions
Broadening parameters
K-tables
Lifetimes
Cooling functions

## Constructed by these wonderful people

# ExoMol: will known by their molecules



#### ScH AIOHNO3 CH4 NH3 HCN **C2** SiH NiHCH3Cl CaO PO NŠ LiH Cź SH CH HC 03 **P0 SO** CH **C**2 PΗ **SO3** 6 a Y0 MgH Si0 BaO H2 SiH S02 S02