Asteroseismology of Exoplanet Host Stars

Conny Aerts

KU Leuven, Belgium

Radboud University Nijmegen, the Netherlands

Exeter, 31 March 2016

Asteroseismology: the Revolution in Stellar Physics

What is it?...Why do we (should you) care?... How does it work in practice?... Solar-like pulsators in Sun-like Stars (M < 1.5 M₀) Massive Exoplanet Host Stars (M > 1.5 M₀) Future steps

KU LEUVEN

Lots of open ? on stellar structure remain starquakes are common & useful tool

Stellar evolution = tested from *surface properties* while life directed by *stellar interior*

Connection between life of host star and its exoplanets?

How does star *formation* happen & how is it connected to planet formation?

KU LEUVEN

The beauty of asteroseismology

aster → star seismos → oscillation logos → discourse

The analysis of stellar oscillations enables the study of the stellar interior because different modes penetrate to different depths inside the star

The boost from space photometry

1

Ω

25

50

75

100

FREQUENCY (µHz)

125

Detection of 100s of oscillation mode frequencies from uninterrupted high-precision longduration space photometry

200

175

150

KU LEUVEN

Sizes of stars from acoustic oscillations

Asteroseismology: how in practice?...

We observe the surface brightness and/or velocity variations due to the oscillations

Perform mathematical modelling of detected oscillation modes v(l,m,n)

$$\Delta_{nlm} = m \int_0^R K_{nl}(r) \Omega(r) \mathrm{d}r,$$

What are the concrete ingredients? Time-series analysis coupled to stellar modelling

KU LEUVEN

The exoplanet host stars: mass

"Easy cases": solar-like pressure modes in-depth seismic probing à-la Helioseismology

The exoplanetary system 16 Cyg A&B, *Kepler*, Metcalfe et al. (2012); Davies et al. (2015)

Seismic Helium abundances of 0.24±0.01(2) for A(B) Verma et al. (2014)

Analysis of acoustic glitches (sharp features): gives depth of convective envelope & extent of He ionisation zone (Mazumdar et al. 2014)

 Scaling relations for solar input physics & p modes:

Radboud Universiteit Nijmegen

$$\frac{\nu_{\max}}{\nu_{\max,\odot}} = \frac{M}{M_{\odot}} \left(\frac{R}{R_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{-\frac{1}{2}}$$
$$\frac{\Delta\nu}{\Delta\nu_{\odot}} = \left(\frac{M}{M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{R}{R_{\odot}}\right)^{-\frac{3}{2}}$$

deliver seismic mass, radius, age: 10x better precision for 100s of solar-like stars observed with Kepler

A distance from Gaia and/or a radius from interferometry can take away the model dependency!

VLT at Paranal

Asteroseismology of Exoplanet Hosts

 Delivery of seismic mass, radius, age for exoplanet host stars for understanding of exoplanetary systems

Radboud Universiteit Nijmegen

Ballot et al. (2011), Lebreton & Goupil (2014): HD 52265 (CoRoT), a GOV type, planet-hosting star modelled for various choices of input physics

Radius: $1.32 \pm 0.02 R_{sun}$,Mass: $1.23 \pm 0.09 M_{sun}$,Age: $2.32 \pm 0.22 Gyr$

Improves planet parameters!

Ensemble asteroseismology +spectroscopy: M:3.7%, R:1.3%, age:12% Huber et al. (2013), Chaplin et al. (2014)

Rotational splitting of mixed modes in SG & RG unravels core rotation... cannot be done for Sun!

from ≠ splittings of dipole mixed modes:

$$\Delta_{nlm} = m \int_0^R K_{nl}(r) \Omega(r) \mathrm{d}r,$$

Beck et al. (2012), Mosser et al. (2012), Deheuvels et al. (2014,2015): only factor 5 to 20 faster core-than-envelope rotation in RG strong core/envelope coupling

standard models 100x wrong: strong internal magnetic fields? (Fuller et al. 2015; Stello et al. 2016)

"Difficult cases" BAF gravity-mode pulsators period spacings only found since space photometry

Pápics et al. (2015): 36 dipole prograde gravity modes tilted by rotation, dips due to g-mode trapping near core

Moravveji et al. (2016): core overshoot: 0.024 chemical envelope mixing: 6 cm^2/s standard rotational mixing theory orders of magnitude off

KIC 9244992 (Saio et al. 2015): <Prot> ≃ 65 days, slower envelope-than-core KIC 11145123 (Kurtz et al. 2014): <Prot> ≃ 100 days, faster envelope-than-core mass between 1.5 and 2.0 M⊙

KU LEUVEN

New way to probe mixing & $\Omega(r)$ in F stars: new mathematical treatment including Coriolis force

Radboud Universiteit Nijmegen

Near-core rotation of F stars with g-modes

Core-to-envelope rotation: IGW in action

2/3D simulations of angular momentum transport by IGW (Rogers et al. 2013, 2015) 17

Asteroseismology in near future: K2 potential for pre-MS pulsators & clusters

Radboud Universiteit Nijmegen

3 months/field focus on underrepresented stars & clusters

Seismic evidence for multiple epochs of star formation Rotation is slower than assumed Zwintz et al. (2014)

Asteroseismology & dynamical/chemical star-exoplanet interactions

Dynamical interactions and angular momentum transport/transfer?

Impact of Host Star Variability on Exoplanet Atmospheres and Climate?

Connecting stellar magnetism, flaring, rotation, pulsation and prediction of bio-markers in exoplanet atmospheres

KU LEUVEN

Impact host star variability on its exoplanets: modelling bio-markers in exo-atmospheres

of tidally-locked terrestrial exoplanets (Carone et al. 2014, 2015)

MIRI/JWST

Asteroseismology & Exoplanets: low-mass planets in HZ & wider orbits

Farther future, beyond 2024: PLATO main mission (3 + 2 yr pointings) & its Complementary Science Programme, step-and-stare phase with targets of choice

Hopefully followed by ARIEL

Asteroseismology: new route for stellar & exoplanetary physics

Progress made since 2009: from ppt to ppm from a few bright solar-like stars to thousands of stars of different types and ages

from physics in stellar envelopes to physics of stellar cores

observational probing of internal rotation, mixing, and angular momentum

STFC & ERC/AdG: MAMSIE

Coupling of 2/3D hydrodynamical simulations of massive stars to 1D stellar evolution theory to constrain angular momentum transport and mixing as a function of stellar mass and age

Direct comparisons to observations: time-series spectroscopy & Kepler data of OBAF-stars to look for IGW signature and internal differential rotation as a function of evolution

Two postdocs are advertised to work on this:

Observational/theoretical w/ C. Aerts in Leuven (<u>conny.aerts@ster.kuleuven.be</u>) Numerical w/ T. Rogers in Newcastle (<u>tamirogers@mac.com</u>)