Gaussian processes for modelling stellar activity and detecting planets

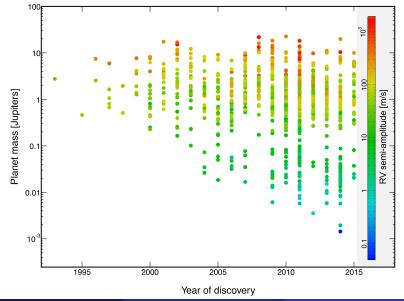
Vinesh Rajpaul¹, Suzanne Aigrain¹, Stephen Roberts²

 1 Oxford Astrophysics

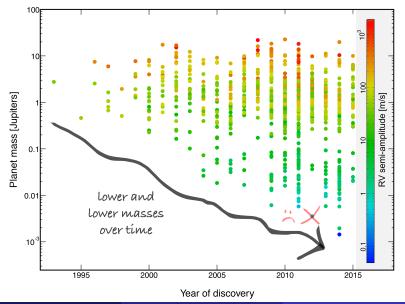
² Oxford Pattern Recognition and Machine Learning Group

31 March 2016

Doppler spectroscopy and exoplanets



Doppler spectroscopy and exoplanets



• $\Delta \mathrm{RV}_{\mathrm{nuisance}}\gtrsim$ or $\gg \Delta \mathrm{RV}_{\mathrm{planet}}$

- $\Delta \mathrm{RV}_{\mathrm{nuisance}}\gtrsim$ or $\gg \Delta \mathrm{RV}_{\mathrm{planet}}$
- ullet Short-term (\sim minutes, hours) signals due to oscillation, granulation

- $\Delta \mathrm{RV}_{\mathrm{nuisance}}\gtrsim$ or $\gg \Delta \mathrm{RV}_{\mathrm{planet}}$
- Short-term (\sim minutes, hours) signals due to oscillation, granulation
- Longer time-scale signals (days to years) associated with rotationally-modulated activity

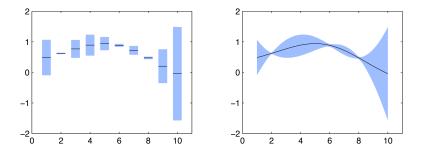
• Are stochastic (active regions appear randomly)

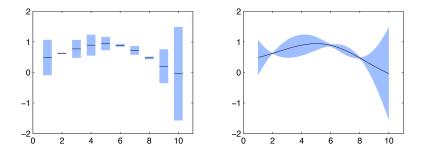
- Are stochastic (active regions appear randomly)
- Characterised by time-scales similar to those associated with planets (days to years)

- Are stochastic (active regions appear randomly)
- Characterised by time-scales similar to those associated with planets (days to years)
- **Quasi-periodic** (periodic stellar rotation + evolving active regions + long-term activity cycles)

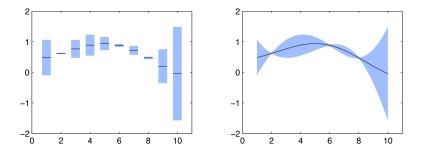
- Are stochastic (active regions appear randomly)
- Characterised by time-scales similar to those associated with planets (days to years)
- **Quasi-periodic** (periodic stellar rotation + evolving active regions + long-term activity cycles)
- Characterised by some **degree of smoothness** (active regions don't change instantaneously)

So what **is** a Gaussian process? (And why should we care?)

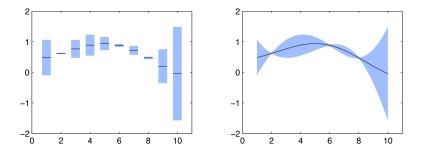




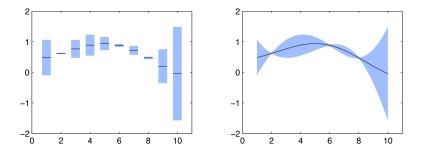
• An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)



- An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)
- A distribution over functions (cf. distribution over vectors)



- An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)
- A distribution over functions (cf. distribution over vectors)
- Fully specified by a **mean function** and **covariance function** (cf. mean vector, covariance matrix)



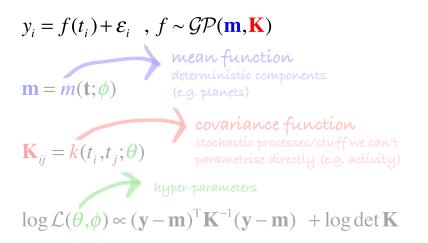
- An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)
- A distribution over functions (cf. distribution over vectors)
- Fully specified by a **mean function** and **covariance function** (cf. mean vector, covariance matrix)
- In practice, we **parametrise** the mean and covariance functions (instead of writing down an infinite number of values!)

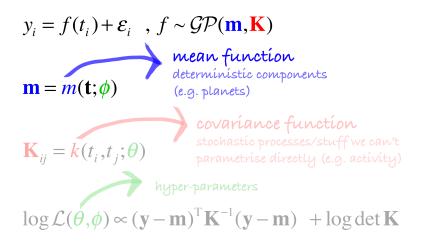
Why GPs?

 Flexible yet principled, data-driven way to perform Bayesian inference about functions → rigorous treatment of uncertainty, model comparison, etc.

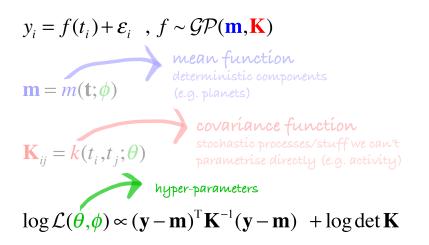
- Flexible yet principled, data-driven way to perform Bayesian inference about functions → rigorous treatment of uncertainty, model comparison, etc.
- Obey lots of convenient analytical identities

- Flexible yet principled, data-driven way to perform Bayesian inference about functions → rigorous treatment of uncertainty, model comparison, etc.
- Obey lots of convenient analytical identities
- Can model functions by parametrising covariance between data points → signal variance, evolution time-scales, (quasi)periodicities, smoothness, noise levels, stationarity, isotropy, etc.

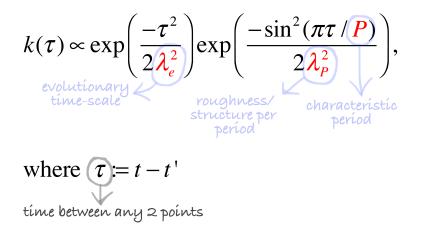


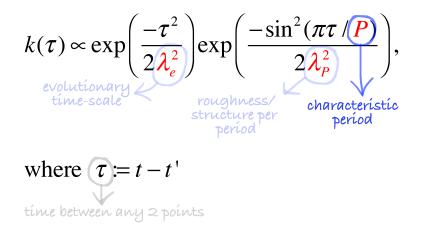


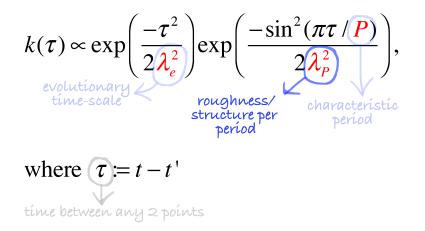
 $y_i = f(t_i) + \varepsilon_i$, $f \sim \mathcal{GP}(\mathbf{m}, \mathbf{K})$ mean function $\mathbf{m} = m(\mathbf{t}; \phi)$ covariance function stochastic processes/stuff we can't $\mathbf{K}_{ii} = \mathbf{k}(t_i, t_i; \boldsymbol{\theta})$ parametrise directly (e.g. activity) $\log \mathcal{L}(\theta, \phi) \propto (\mathbf{y} - \mathbf{m})^{\mathrm{T}} \mathbf{K}^{-1} (\mathbf{y} - \mathbf{m}) + \log \det \mathbf{K}$

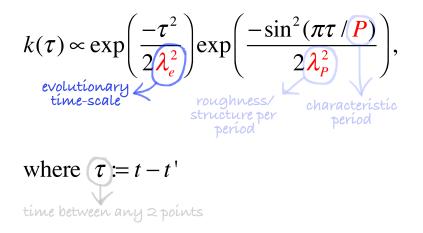


 $y_i = f(t_i) + \varepsilon_i$, $f \sim \mathcal{GP}(\mathbf{m}, \mathbf{K})$ mean function $\mathbf{m} = m(\mathbf{t}; \phi)$ covariance function stochastic processes/stuff we can't $\mathbf{K}_{ii} = \mathbf{k}(t_i, t_i; \boldsymbol{\theta})$ parametrise directly (e.g. activity) $\log \mathcal{L}(\theta, \phi) \propto (\mathbf{y} - \mathbf{m})^{\mathrm{T}} \mathbf{K}^{-1} (\mathbf{y} - \mathbf{m}) + \log \det \mathbf{K}$





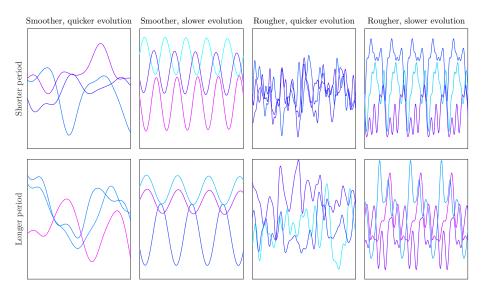




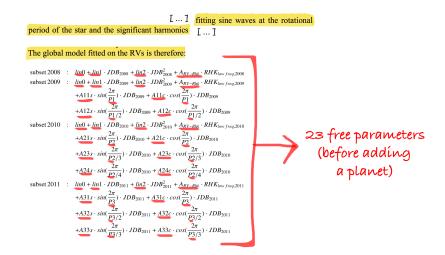
$$k(\tau) \propto \exp\left(\frac{-\tau^{2}}{2\lambda_{e}^{2}}\right) \exp\left(\frac{-\sin^{2}(\pi\tau/P)}{2\lambda_{P}^{2}}\right),$$

evolutionary
time-scale
roughness/
structure per
period
where $\tau = t - t'$
time between any 2 points

Function draws: quasi-periodic covariance function



Why not a parametric model?



Activity model for Alpha Cen B, from Dumusque et al. (2012)

$$k(\tau) \propto \exp\left(\frac{-\tau^{2}}{2\lambda_{e}^{2}}\right) \exp\left(\frac{-\sin^{2}(\pi\tau/P)}{2\lambda_{P}^{2}}\right),$$

evolutionary
time-scale
roughness/
structure per
period
where $\tau = t - t'$
time between any 2 points

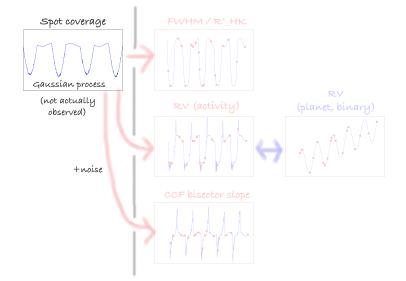
Recap

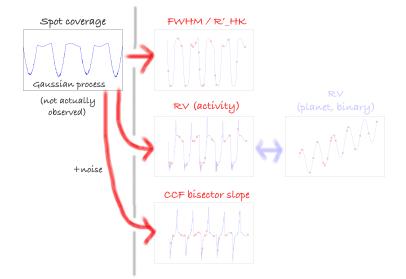
 $\mathsf{GPs} \to \mathsf{easy}$ Bayesian inference about functions

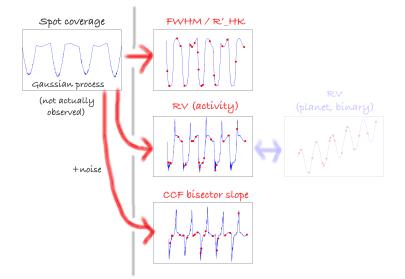
Now, on to the science!

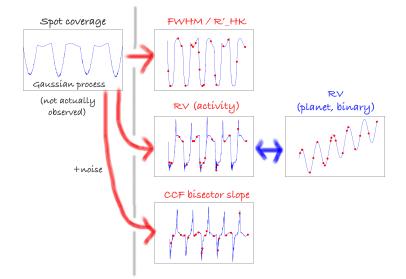
(1) GPs to **disentangle** activity and planetary signals

a.k.a. model ALL available data

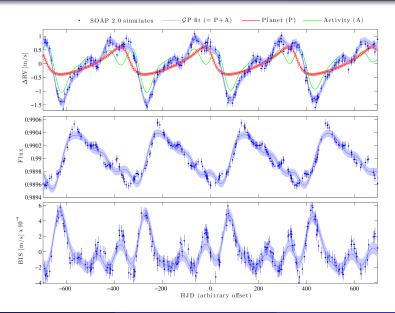








It works as intended



• Affine transformations (Σ , $\int dt$, $\frac{d}{dt}$, etc.) of a GP yields another GP

- Affine transformations $(\Sigma, \int dt, \frac{d}{dt}, \text{ etc.})$ of a GP yields another GP
- \rightarrow Can use e.g. the FF' method, which says ΔRV related to photometric flux and its first derivative (Aigrain *et al.*, 2012, MNRAS)

- Affine transformations $(\Sigma, \int dt, \frac{d}{dt}, \text{ etc.})$ of a GP yields another GP
- \rightarrow Can use e.g. the FF' method, which says ΔRV related to photometric flux and its first derivative (Aigrain *et al.*, 2012, MNRAS)
- More details on the physics:

A Gaussian process framework for modelling stellar activity signals in radial velocity data

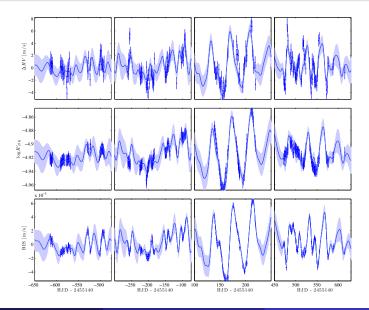
V. Rajpaul,^{1*} S. Aigrain,¹ M. A. Osborne,² S. Reece² and S. Roberts²

¹Subdepartment of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH, UK ²Pattern Recognition and Machine Learning Group, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

Accepted 2015 June 24. Received 2015 June 22; in original form 2015 March 16

- Proof of concept: accurately recover already-published exoplanet parameters, e.g. for Gliese 15 A, CoRoT-7 (Rajpaul et al., 2015; MNRAS)
- ② New result: **discovery of HD175607 b**, most metal-poor G dwarf with an orbiting sub-Neptune; $P_{\text{star}} \approx P_{\text{planet}}$ (Mortier *et al.*, 2015; A&A)
- New result: demonstration that Alpha Cen Bb is a false positive (Rajpaul et al., 2016; MNRAS Letters)

Four seasons of Alpha Cen B data



Vinesh Rajpaul (Oxford Astrophysics)

Some applications for exoplanets

2 GPs as a powerful **simulation tool**

• Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.

- Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.
- Can then randomly generate **realistic synthetic data**, with arbitrary sampling, with same covariance properties as the real data

- Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.
- Can then randomly generate **realistic synthetic data**, with arbitrary sampling, with same covariance properties as the real data
- Can use this to

- Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.
- Can then randomly generate **realistic synthetic data**, with arbitrary sampling, with same covariance properties as the real data
- Can use this to
 - study detection limits, optimal observing strategies, etc.

- Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.
- Can then randomly generate **realistic synthetic data**, with arbitrary sampling, with same covariance properties as the real data
- Can use this to
 - study detection limits, optimal observing strategies, etc.
 - identify artefacts introduced through fitted models

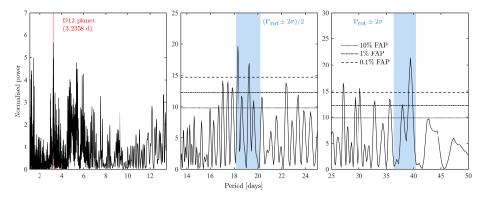
- Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.
- Can then randomly generate **realistic synthetic data**, with arbitrary sampling, with same covariance properties as the real data
- Can use this to
 - study detection limits, optimal observing strategies, etc.
 - identify artefacts introduced through fitted models
 - identify artefacts associated with discrete sampling

- Can train GPs on real data containing noise and astrophysical nuisance signals, instrumental effects and other systematics, uneven sampling, etc.
- Can then randomly generate **realistic synthetic data**, with arbitrary sampling, with same covariance properties as the real data
- Can use this to
 - study detection limits, optimal observing strategies, etc.
 - identify artefacts introduced through fitted models
 - identify artefacts associated with discrete sampling

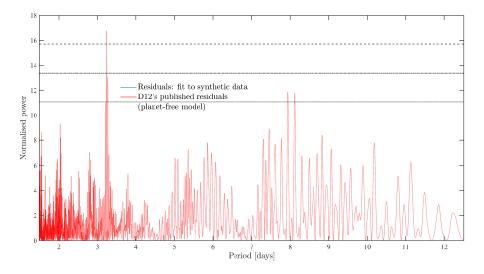
The example of Alpha Cen B

Power spectrum of the window function

(Rajpaul et al., 2016; MNRAS Letters)

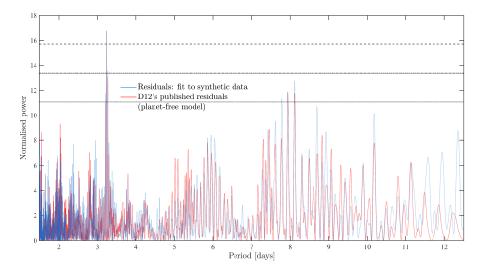


The example of Alpha Cen B



Vinesh Rajpaul (Oxford Astrophysics)

The example of Alpha Cen B



Some applications for exoplanets

3 GPs to study **periodic phenomena**

a.k.a. we can do better than Lomb-Scargle periodograms

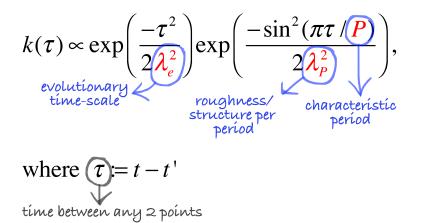
Beyond the Lomb-Scargle periodogram

• Lomb-Scargle method/LSSA is convenient, easy to understand, and popular...but restrictive, and often inappropriate

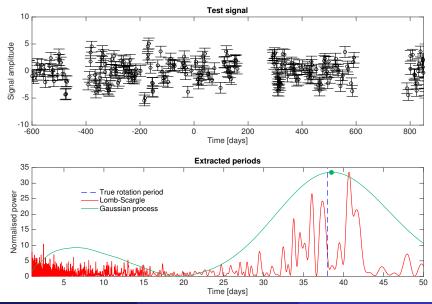
- Lomb-Scargle method/LSSA is convenient, easy to understand, and popular...but restrictive, and often inappropriate
- What about signals that are non-sinusoidal, quasi-periodic, contain correlated noise, etc...?

- Lomb-Scargle method/LSSA is convenient, easy to understand, and popular...but restrictive, and often inappropriate
- What about signals that are non-sinusoidal, quasi-periodic, contain correlated noise, etc...?
- Drop-in replacement: GP periodogram (with Angus et al.)

Quasi-periodic covariance function (again)

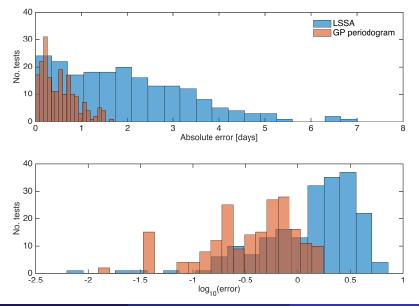


GP periodogram



Vinesh Rajpaul (Oxford Astrophysics)

GP periodogram



Vinesh Rajpaul (Oxford Astrophysics)

One step-further: differential rotation

- Assume distribution of quasi-periodic signals, each generated by quasi-periodic kernel. Say $f(P') \sim \mathcal{N}(P, \sigma)$, or $f(P') \sim \mathcal{U}(P \sigma, P + \sigma)$
- Integrate over this distribution to get new covariance kernel
- $\bullet\,$ Characterise differential rotation via posterior distribution of P and $\sigma\,$
- Early results are promising...watch this space (injection tests currently underway)

(4) GPs to extract **precise RVs** directly from spectra

towards < 10 cm/s precisions ?

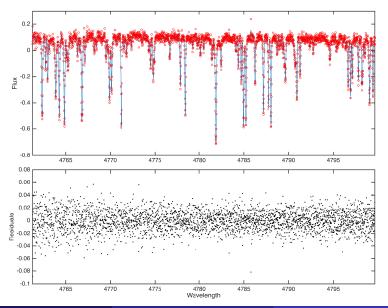
Using GPs to extract RVs from spectra

• Given spectra of a star observed N times, model all N spectra (lines, continuum) as draws from a single underlying GP $+\Delta\lambda$

- Given spectra of a star observed N times, model all N spectra (lines, continuum) as draws from a single underlying GP $+\Delta\lambda$
- Treat the GP models as noise-free interpolants of the spectra

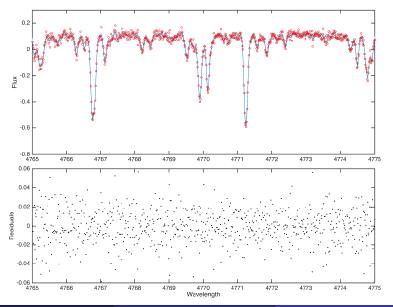
- Given spectra of a star observed N times, model all N spectra (lines, continuum) as draws from a single underlying GP $+\Delta\lambda$
- Treat the GP models as noise-free interpolants of the spectra
- Fit (N-1) RV shifts/translations to maximise alignment
- Optional: **unshift** all spectra to obtain high resolution "master" spectrum

Ultra high-precision RVs



Vinesh Rajpaul (Oxford Astrophysics)

Ultra high-precision RVs



Vinesh Rajpaul (Oxford Astrophysics)

• Where HARPS-N DRS obtains ~ 43 cm/s precision, we manage ~ 37 cm/s precision (m_v ~ 6.5)

- Where HARPS-N DRS obtains ~ 43 cm/s precision, we manage ~ 37 cm/s precision (m_v ~ 6.5)
- Fainter stars? Results pending ($\sim 1 \text{ m/s improvement?}$)...

- Where HARPS-N DRS obtains ~ 43 cm/s precision, we manage ~ 37 cm/s precision (m_v ~ 6.5)
- Fainter stars? Results pending ($\sim 1 \text{ m/s improvement?}$)...
- Beyond RVs: extract better measures of stellar activity?

Summary

• GPs represent a flexible, principled, data-driven way to perform inference in the presence of

- GPs represent a flexible, principled, data-driven way to perform inference in the presence of
 - correlated noise and nuisance signals; and/or

- GPs represent a flexible, principled, data-driven way to perform inference in the presence of
 - correlated noise and nuisance signals; and/or
 - functions we can't parametrise directly

- GPs represent a flexible, principled, data-driven way to perform inference in the presence of
 - correlated noise and nuisance signals; and/or
 - functions we can't parametrise directly
- Useful addition to the toolbox of anyone trying to detect or characterise exoplanets

- GPs represent a flexible, principled, data-driven way to perform inference in the presence of
 - correlated noise and nuisance signals; and/or
 - functions we can't parametrise directly
- Useful addition to the toolbox of anyone trying to detect or characterise exoplanets
- Some recent applications on which I've worked
 - GPs to disentangle activity and planets
 - OFS as a powerful simulation tool
 - **③** GPs to characterise periodic phenomena e.g. stellar rotation
 - GPs for extracting high-precision RVs from spectra

Thanks! Any questions?

vinesh.rajpaul@ astro.ox.ac.uk