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Doppler spectroscopy and exoplanets
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Stellar nuisance signals

° A1:{\/nuisamce Z or > A]f_{\/vplanet
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Stellar nuisance signals

° A1:{\/nuisamce Z or > A]f_{\/vplanet

@ Short-term (~ minutes, hours) signals due to oscillation, granulation
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Stellar nuisance signals

° A1:{\/nuisamce Z or > A]f_{\/vplanet
@ Short-term (~ minutes, hours) signals due to oscillation, granulation

@ Longer time-scale signals (days to years) associated with
rotationally-modulated activity
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Stellar nuisance signals

Rotationally-modulated activity signals...
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Stellar nuisance signals

Rotationally-modulated activity signals...

@ Are stochastic (active regions appear randomly)
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Stellar nuisance signals

Rotationally-modulated activity signals...

@ Are stochastic (active regions appear randomly)

@ Characterised by time-scales similar to those associated with
planets (days to years)

4] Quasi-periodic (periodic stellar rotation + evolving active regions + long-term

activity cycles)
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Stellar nuisance signals

Rotationally-modulated activity signals...

@ Are stochastic (active regions appear randomly)

@ Characterised by time-scales similar to those associated with
planets (days to years)

4] Quasi-periodic (periodic stellar rotation + evolving active regions + long-term

activity cycles)

@ Characterised by some degree of smoothness (active regions don't change

instantaneously)
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Introducing GPs

So what is a Gaussian process?

(And why should we care?)
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Introducing GPs
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Introducing GPs

@ An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



Introducing GPs

@ An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)
o A distribution over functions (cf. distribution over vectors)
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Introducing GPs

@ An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)
o A distribution over functions (cf. distribution over vectors)
o Fully specified by a mean function and covariance function (cf. mean

vector, covariance matrix)
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Introducing GPs

@ An infinite-dimensional Gaussian distribution (cf. multivariate Gaussian)

o A distribution over functions (cf. distribution over vectors)

o Fully specified by a mean function and covariance function (cf. mean
vector, covariance matrix)

@ In practice, we parametrise the mean and covariance functions

(instead of writing down an infinite number of values!)

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



@ Flexible yet principled, data-driven way to perform Bayesian
inference about functions — rigorous treatment of uncertainty, model

comparison, etc.
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@ Flexible yet principled, data-driven way to perform Bayesian
inference about functions — rigorous treatment of uncertainty, model

comparison, etc.

@ Obey lots of convenient analytical identities
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@ Flexible yet principled, data-driven way to perform Bayesian
inference about functions — rigorous treatment of uncertainty, model

comparison, etc.
@ Obey lots of convenient analytical identities

@ Can model functions by parametrising covariance between data
points — signal variance, evolution time-scales, (quasi)periodicities, smoothness, noise

levels, stationarity, isotropy, etc.
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Towards GP regression

y,=f@)+e , f~GPm,K)
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Towards GP regression

y,=f@)+e , f~GPm,K)

deterministic components

m= m(t,(b) (e-9. planets)
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Towards GP regression

y,=f@)+e , f~GPm,K)

covariance function

K, = k(1,.1,;6)
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Towards GP regression

y,=f@)+e , f~GPm,K)

¥ Yper-parameters

log £(0,0)<(y—m)' K'(y—m) +logdetK
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Towards GP regression

y,=f@)+e , f~GPm,K)

covariance function

K, = k(1,.1,;6)
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Example: quasi-periodic covariance function

—7° —sin* (7t / P)

ex ,
222 TP T o

k(T) o< exp

where (T=¢—1t'

’ ' ’
tume between any 2 polnts
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Example: quasi-periodic covariance function

—7? —sin® (77 /
k(T) o< exp YE exp 2(/12 ? ’
e P

characteristic
penod

where 7:=¢t—1t'
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Example: quasi-periodic covariance function

—7° —sin* (7t / P)
k(T) o< exp — |exp ,
g
roughness/
structure per
pertod

where 7:=¢t—1t'

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



Example: quasi-periodic covariance function

—7° —sin* (7t / P)
27, ’

evolutionar
time-scale

where 7:=¢t—1t'
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Example: quasi-periodic covariance function

2

—T —sin (m'/
k(T) o< exp @ exp '
erLwc'Lowar5 \L
tume-scale roughness/ characteristic
structure per penod
penod
where (7)=1¢—1t'

tume between any 2 po'w\,ts
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Function draws: quasi-periodic covariance function

Smoother, quicker evolution Smoother, slower evolution Rougher, quicker evolution — Rougher, slower evolution

Longer period

Shorter period
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Why not a parametric model?

[..] fitting sine waves at the rotational
period of the star and the significant harmonics [ . 7]

The global model fitted on the RV is therefore:

subset 2008+ 40 il - JDBaoos +Lin2 - IDBos + Agy_gis s RHKiow req 2008

subset2009 :  lin0 + lin1 - JDBaogo + lin2 - IDB3go + Arv—rise - RHKion freq.2009

2
+Alls- n‘n(—") < IDBaxxy + ALl cos() - DBy
a

+AL2s rm(T) JDByny + A12¢ - cos(5==) - JDBxos

Pl/2

subset 2010 : Im()+lml DB +lin2 - ./DBm“,+A  RHK v freq2010

A2 un(—”) DB+ A2lc- (m(—) IDBaoio 2= 'ﬁ’ce 'PaVaVWCtCYS

+A23s - ém( ) JDBaoyg +A23c - (us(&/ )-JDBxyig (be{or@ aolo!w»g
+&4S.im(&/ ) IDBan + A2de -cost /4) JDBaig a ‘PLa V\,et)

subset2011 :  [in0 + inl - JDBaony +1in2 - DBy, + Agy_gis - RHKi jreg2ont

+A31s-sin(ﬂ>-JDBm,, +A31c-ms(ﬂ) - JDBxyn,
- &

+A3Zs vzn(

/ ) .IDBZ(”1+A325 Lov( / )« JDBo11

) JDBZUH+A33¢ c()\‘( / ) - JDBo11

Activity model for Alpha Cen B, from Dumusque et al. (2012)
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Example: quasi-periodic covariance function

2

—T —sin (m'/
k(T) o< exp @ exp '
erLwc'Lowar5 \L
tume-scale roughness/ characteristic
structure per penod
penod
where (7)=1¢—1t'

tume between any 2 po'w\,ts
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Recap

GPs — easy Bayesian inference about functions

Now, on to the science!
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Some applications for exoplanets

(1) GPs to disentangle activity
and planetary signals

a.k.a. model ALL available data

Vinesh Rajpaul (Oxford Astrophysics) 31 March 2016



Disentangling activity and planetary signals

Spot coverage

\ \ / /
VoV \
V \/ v \/
Gaussian process

(not actua LL5
observed)

+nolse
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Disentangling activity and planetary signals

Spot coverage FWHM/ R_HK
\ \'\ J's “' Y ﬂ
v \/ v \/
Gaussian process
(not actually ..
RV (activit
observed) ¢ Y
+wnoise

CCF bisector slope
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Disentangling activity and planetary signals

Spot coverage FWHM/ R_HK
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Disentangling activity and planetary signals

Spot coverage FWHM/ R_HK
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It works as intended

Activity (A)

SOAP 2.0 simulates GP fit (= P+A) Planet (P)

ARV [m/s]

0
HJD (arbitrary offset)

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



How to link different observables?
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How to link different observables?

o Affine transformations (X, [ dt, 4, etc.) of a GP yields another GP
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How to link different observables?

o Affine transformations (X, [ dt, 4, etc.) of a GP yields another GP

e — Can use e.g. the F'F’ method, which says ARV related to
photometric flux and its first derivative (Aigrain et al., 2012, MNRAS)
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How to link different observables?

e Affine transformations (X, fdt, 4 etc.) of a GP yields another GP

e — Can use e.g. the F'F’ method, which says ARV related to
photometric flux and its first derivative (Aigrain et al., 2012, MNRAS)

@ More details on the physics:

2

ofthe.
ROYAL ASTRONOMICAL SOCIETY
doi:10.1093/mnras/stv1428

MNRAS 452, 2269-2291 (2015)
A Gaussian process framework for modelling stellar activity signals
in radial velocity data

V Rajpaul,’* S. A1gram M. A. Osborne,” S. Reece? and S. Roberts?

y of Astr , Dey of Physics, University of Oxford, Oxford OX1 3RH, UK
2Pattern Recognition and Machine Learning Group, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

Accepted 2015 June 24. Received 2015 June 22; in original form 2015 March 16

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



Some science results

@ Proof of concept: accurately recover already-published exoplanet
parameters, e.g. for Gliese 15 A, CoRoT-7 (Rajpaul et al., 2015; MNRAS)

@ New result: discovery of HD175607 b, most metal-poor G dwarf
with an orbiting sub-Neptune; Pstar & Pplanet (Mortier et al., 2015; A&A)

© New result: demonstration that Alpha Cen Bb is a false positive
(Rajpaul et al., 2016; MNRAS Letters)
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Four seasons of Alpha Cen B data

,
3

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



Some applications for exoplanets

(2) GPs as a powerful simulation
tool
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GPs as a simulation tool
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GPs as a simulation tool

@ Can train GPs on real data containing noise and astrophysical
nuisance signals, instrumental effects and other systematics, uneven
sampling, etc.
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sampling, with same covariance properties as the real data
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GPs as a simulation tool

@ Can train GPs on real data containing noise and astrophysical
nuisance signals, instrumental effects and other systematics, uneven
sampling, etc.

@ Can then randomly generate realistic synthetic data, with arbitrary
sampling, with same covariance properties as the real data

@ Can use this to

o study detection limits, optimal observing strategies, etc.
o identify artefacts introduced through fitted models
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The example of Alpha Cen B

Power spectrum of the window function

(Rajpaul et al., 2016; MNRAS Letters)

D12 planet
(3.2358 d)

20

©
IS
:
:
=

16 18 20 22 24 25 30 35 40 45 50
Period [days]
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The example of Alpha

- ——Residuals: fit to synthetic data
——D12’s published residuals | |

(planet-free model)
10 -

Normalised power
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The example of Alpha Cen B
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Some applications for exoplanets

(3) GPs to study periodic
phenomena

a.k.a. we can do better than Lomb-Scargle
periodograms
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Beyond the Lomb-Scargle periodogram
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Beyond the Lomb-Scargle periodogram

@ Lomb-Scargle method/LSSA is convenient, easy to understand, and
popular...but restrictive, and often inappropriate
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Beyond the Lomb-Scargle periodogram

@ Lomb-Scargle method/LSSA is convenient, easy to understand, and
popular...but restrictive, and often inappropriate

@ What about signals that are non-sinusoidal, quasi-periodic, contain
correlated noise, etc...?
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Beyond the Lomb-Scargle periodogram

@ Lomb-Scargle method/LSSA is convenient, easy to understand, and
popular...but restrictive, and often inappropriate

@ What about signals that are non-sinusoidal, quasi-periodic, contain
correlated noise, etc...?

@ Drop-in replacement: GP periodogram (with Angus et al.)
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Quasi-periodic covariance function (again)

2
—T —sin (m'/
k(T) o< exp @ exp '
erLwc'Lowar5 \L
tume-scale roughwness/ characteristic
structure per penod
penod
where (7)=1¢—1t'

tume between any 2 po'w\,ts
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GP periodogram

Test signal
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GP periodogram
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One step-further: differential rotation

@ Assume distribution of quasi-periodic signals, each generated by
quasi-periodic kernel. Say f(P') ~ N (P, o), or
f(P)y~U(P —0,P+o0)

@ Integrate over this distribution to get new covariance kernel
o Characterise differential rotation via posterior distribution of P and o

@ Early results are promising...watch this space (injection tests currently
underway)
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Some applications for exoplanets

(4) GPs to extract precise RVs
directly from spectra

towards < 10 cm/s precisions 7
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Using GPs to extract RVs from spectra

@ Given spectra of a star observed N times, model all N spectra (lines,
continuum) as draws from a single underlying GP +A\
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Using GPs to extract RVs from spectra

@ Given spectra of a star observed N times, model all N spectra (lines,
continuum) as draws from a single underlying GP +A\

@ Treat the GP models as noise-free interpolants of the spectra

Vinesh Rajpaul (Oxford Astrophysics) GPs and exoplanets 31 March 2016



Using GPs to extract RVs from spectra

Given spectra of a star observed N times, model all N spectra (lines,
continuum) as draws from a single underlying GP +A\

Treat the GP models as noise-free interpolants of the spectra

e Fit (V. — 1) RV shifts/translations to maximise alignment

Optional: unshift all spectra to obtain high resolution “master”
spectrum
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Ultra high-precision RVs

Flux
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Ultra high-precision RVs
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Some early results

@ Where HARPS-N DRS obtains ~ 43 cm/s precision, we manage
~ 37 cm/s precision (m, ~ 6.5)
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Some early results

@ Where HARPS-N DRS obtains ~ 43 cm/s precision, we manage
~ 37 cm/s precision (m, ~ 6.5)

o Fainter stars? Results pending (~ 1 m/s improvement?)...
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Some early results

@ Where HARPS-N DRS obtains ~ 43 cm/s precision, we manage
~ 37 cm/s precision (m, ~ 6.5)

o Fainter stars? Results pending (~ 1 m/s improvement?)...

@ Beyond RVs: extract better measures of stellar activity?
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Summary
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Summary

@ GPs represent a flexible, principled, data-driven way to perform
inference in the presence of
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Summary

@ GPs represent a flexible, principled, data-driven way to perform
inference in the presence of

e correlated noise and nuisance signals; and/or
e functions we can't parametrise directly

@ Useful addition to the toolbox of anyone trying to detect or
characterise exoplanets
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@ GPs represent a flexible, principled, data-driven way to perform
inference in the presence of

e correlated noise and nuisance signals; and/or
e functions we can't parametrise directly

@ Useful addition to the toolbox of anyone trying to detect or
characterise exoplanets

@ Some recent applications on which I've worked

@ GPs to disentangle activity and planets

@ GPs as a powerful simulation tool

© GPs to characterise periodic phenomena e.g. stellar rotation
© GPs for extracting high-precision RVs from spectra
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Thanks!
Any guestions?

vinesh.rajpaul@
astro.ox.ac.uk
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